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Lyapunov Theory for 2-D Nonlinear Roesser Models:
Application to Asymptotic and Exponential Stability

Nima Yeganefar, Nader Yeganefar, Mariem Ghamgui, and
Emmanuel Moulay

Abstract—This technical note deals with a general class of discrete 2-D
possibly nonlinear systems based on the Roesser model. We first motivate
the introduction of Lyapunov type definitions of asymptotic and exponen-
tial stability. This will allow us to introduce and discuss several particular-
ities that cannot be found in 1-D systems. Once this background has been
carefully designed, we develop different Lyapunov theorems in order to
check asymptotic and exponential stability of nonlinear 2-D systems. Fi-
nally we propose the first converse Lyapunov theorem in the case of expo-
nential stability.

Index Terms—Converse Lyapunov theorem, Lyapunov functions,
systems, nonlinear discrete systems.

I. INTRODUCTION

A. Historical Context

The first studies on multidimensional systems started in the mid
1970s. The focus was mainly on linear systems and transfer functions.
Instead of working with a transfer function, which depends on one in-
dependent variable, they looked at polynomial functions of 2 and more
generally variables. The notion of stability has also been investigated
in terms of BIBO stability (bounded input bounded output) [1]. This led
to the famous stability criterion which roughly states that the transfer
function is BIBO stable for systems devoid of poles outside the sta-
bility region. It was quoted as a necessary and sufficient condition, led
to several stability tests [2], [3], and broadened to include exponential
stability in [4]. However Goodman later showed in [5] that the condi-
tion is necessary only if the transfer function does not present a partic-
ular type of point called nonessential singularity of the second kind. It
is worth noting that these points have no equivalence in the 1-D case.
The first state-space models were introduced a bit later with the work

of Roesser [6] and Fornasini–Marchesini [7], [8], who also proposed a
definition of asymptotic stability relevant to their model. With the in-
troduction of state space models and the development of several tech-
niques based on linear matrix inequalities (LMIs) and Lyapunov tech-
niques, there was a growing interest in 2-D systems ([9]–[15], etc.).

B. Stability Background for 1-D Systems

Consider the following dynamical system: ,
where , is a sequence with values in some ,
is a map such that , and the initial condition is given by

. Recall the well-known stability definitions ([16]):
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(i) is called stable in the sense of Lyapunov if for all , there
exists such that if , then for all ,

.
(ii) is called attractive if for any trajectory , we have

as .
(iii) is called asymptotically stable if it is stable and attractive.
(iv) is called exponentially stable if there exist constants

and such that for every trajectory and all ,
we have .

Obviously, exponential stability implies asymptotic stability, and
asymptotic stability implies attractivity (by definition). The converse
implications are generally not true [17, Section 40], but they hold for
linear systems.
The main goal of this technical note is to consider similar definitions

for multidimensional systems and develop a corresponding Lyapunov
theory.

C. Initial Conditions for 2-D Systems

Let us first introduce the studied system, a generalization of the
model introduced by Roesser [6]:

(1)

where is a given function with
, and . To have unique

solutions, we have to specify a subset on which initial condi-
tions have to be given, but contrary to the 1-D case, there is no obvious
choice. The first possible choice is to notice that in the 1-D case, there
is a natural notion of past (the set of negative integers), present (at 0),
and future (the set of positive integers). This is the approach adopted by
Fornasini-Marchesini ([7], [8]) for 2-D systems: these authors consider
initial conditions given on the subset ,
and, the “future” being the subset , they study
the behavior of trajectories as . More specifically, the
system is called asymptotically stable if given any bounded initial con-
dition on , the corresponding trajectory goes to zero as .
Note that in this definition, one has to consider only bounded initial
conditions, otherwise one may have unbounded trajectories. Several
technical notes have since extended the stability definitions and dis-
cussed the importance of the initial conditions. In the more general
case, [18] studied the stability for proper cones, and recently [19] ex-
tended the concept to the notion of time-relevant stability, where one
of the dimensions (usually time) plays a specific role for stability.
The second possible choice for initial conditions, which also appears

in the literature ([4], [14], [20], [21]), is to give and on the pos-
itive semi-axes (i.e., , and for ), and to study
the behavior of trajectories in the first quadrant as . Our
work will take place in this framework. We would like to mention here
a key difference between this approach and the Fornasini-Marchesini
approach, which we feel has not been highlighted in previous works. If
the initial conditions are given on the positive semi-axes, and if wewant
the trajectories to have some convergence property as ,
then the initial conditions have to satisfy at least this property, too. For
example, one cannot hope to require attractivity (i.e., as

) for any bounded initial conditions, because attractivity
implies in particular that as and
as .

D. Contribution

Let us now explain what is really new in this technical note, and
why we need to revisit these notions of stability which have already
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long been studied. Firstly, as recalled in the beginning of this intro-
duction, in the 1-D case, asymptotic stability encapsulates two proper-
ties, namely stability in the sense of Lyapunov and attractivity. How-
ever, in the 2-D case, most authors usually forget about the stability
part (with the exception of [20]), and only use attractivity. Secondly,
there is no satisfying definition of exponential stability in the 2-D case
(see Section II for more on this). Thirdly, works on the stability of 2-D
systems deal almost exclusively with linear systems. This could also
explain the first two points above, because for 2-D linear systems, at-
tractivity should imply exponential stability and stability in the sense
of Lyapunov; a proof of this is however missing in the literature.
Our aim here is to study general nonlinear systems such as (1), with

initial conditions given on the positive semi-axes. For these systems,
we will define a notion of asymptotic stability which generalizes the
existing notion for 1-D systems (see Section II). We will also define a
notion of exponential stability. This definition is completely new and
shows an interesting feature concerning 2-D systems which had not yet
been documented (see Proposition 2.5). In Section III, we will develop
theoremsà la Lyapunov that are in coherence with our proposed defini-
tions. These theorems are tools to assess the different types of stability
introduced. Moreover, we will introduce the first converse Lyapunov
theorem in the exponential case for 2-D discrete nonlinear systems (for
the 1-D case, one can refer to [22]).

Notations

Let us briefly examine the notations that will be used in this technical
note. A continuous function is said to be of class , if

and is strictly increasing. is said to be of class if it
is of class and if .
For any , let us denote by the set of -valued

sequences which decay exponentially at rate , that is, a sequence
belongs to if for some constant ,

we have . We endow with two
different norms. First, the sup norm and second

. Note that but the two
norms are not equivalent.

II. STABILITY DEFINITIONS

Recall that we want to define stability properties for the following
nonlinear 2-D Roesser model

(2)

where is a given function with
, , , and with initial condi-

tions the sequences , .
Definition 2.1 ( Stability): The point is said to be stable

(in the sense of Lyapunov) if for all , there exists such
that if , then for all .
Definition 2.2 (Asymptotic Stability): The point is said to

be asymptotically stable (in the sense of Lyapunov) if:
1) is stable (in the sense of Definition 2.1);
2) when and

. This property will be called attractivity as
in the 1-D case.

Remark 1: In order to verify asymptotic stability, one needs to first
check the stability condition (where the initial conditions need not go
to 0 at infinity) and then to check that when

and . This is a funda-
mental difference with the 1-D case where asymptotic stability implies
that all trajectories go to 0 at infinity whatever the initial conditions are.

In the 2-D case, taking the initial conditions in the first quadrant, one
cannot hope to have every trajectory approaching 0 simply because it
may not be the case for the initial conditions.
Remark 2: Usually in the literature, the notion of stability is set aside

to retain only the attractivity condition in Definition 2.2, and without
mentioning that the initial conditions have to go to 0 at infinity.
Let us now introduce the definition of exponential stability. One has

to keep in mind that it must be an extension of the 1-D case and at least
imply asymptotic stability as defined above.
Definition 2.3 (Exponential Stability): The equilibrium point
of system (2) is said to be exponentially stable if there are constants

and such that for any initial conditions and
, and for all , we have

Some comments on this definition are in order. First, it is easy to verify
that each term is determined by the knowledge of and

, for , and , so that it is natural to
express the bound of in terms of these quantities. Next, we have
the following property, as in the 1-D case:
Proposition 2.4: Exponential stability implies asymptotic stability

(Definition 2.2).
Proof: Stability comes from the fact that for a given ,

there exists a such that if for all ,
and , then

Attractivity follows by similar arguments.
To further motivate our definition, consider a special example of

system (2) where and is given by an upper triangular
matrix with a single eigenvalue

(3)

If , then 0 is an exponentially stable equilibrium point
as expected. Indeed, with initial conditions still on the positive
semi-axes, we can explicitly compute the solutions:

and .
Exponential stability follows easily.
We would also like to point out a striking feature of 2-D systems

which does not occur in the 1-D case: in the general exponentially
stable case of Definition 2.3, even if the initial conditions decay ex-
ponentially at rate , the trajectory itself does not necessarily decay at
rate , but only at rate , for any . We record this fact in the
following proposition:
Proposition 2.5: Assume that the equilibrium point 0 is exponen-

tially stable for system (2) in the sense of Definition 2.3. Assume also
that is a trajectory of system (2), whose initial conditions decay ex-
ponentially at rate . Then for any , decays exponentially at
rate , but does not necessarily decay at rate .

Proof: As the initial conditions decay exponentially at rate , we
can find some positive constant such that for all , we have
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and . Now, by exponential sta-
bility, we have for all

for some positive constant (which depends on and ). This
means precisely that decays exponentially at rate . To see that
does not necessarily decay at rate , consider again the upper triangular
linear case (3). Take for example and for

. Then , which shows that does
not decay at rate .
To conclude this section, let us briefly comment on the existing defi-

nitions of exponential stability for 2-D systems. One of the only works
dealing with this problem is given by Pandolfi in [4]. Later in [23], the
authors extended this definition to repetitive systems but we are not dis-
cussing this special type of multidimensional systems in this technical
note. It is interesting to point out that Pandolfi takes the initial condi-
tions on the positive semi-axes and proposes the following definition:
the equilibrium point is exponentially stable if there exists a
constant such that for some , all trajectories
satisfy:

With this definition, however, it is not guaranteed that
but only .

Moreover, the trivial solution of system (3) is not exponentially stable
in this sense.
One could also try the bound where is a con-

stant which depends on the initial conditions. This is what has been re-
cently proposed in the continuous case [24]. It is however not sufficient
for us, because with this definition, it is not guaranteed that exponential
stability will imply asymptotic stability in the way we want to define
it. The attractivity condition is easily verified but not the stability
condition. For this last condition, the bound of the initial conditions
needs to be explicitly taken into account in the definition of exponen-
tial stability. Moreover, the linear upper triangular case (3) does not
satisfy this condition.

III. MAIN RESULTS

A. Direct Theorems

The first theorem introduced in this section has been applied in the
literature but a complete proof is missing if one chooses the above def-
inition. The proof proposed here shares the same philosophy that was
first, as far as we know, introduced in [9], that is, showing that the en-
ergy stored along the lines of an asymptoti-
cally stable system is decreasing. This idea was later extended by Liu in
[20] for a system with some nonlinearities and applied to systems with
delays in [13]. Here we provide a different proof, easier to follow and
in coherence with our definition. Note also that in all the subsequent
theorems of this section the assumption that the initial conditions have
finite support is required.

Theorem 3.1: Let , be continuous functions from ,
, respectively, such that for all :

(4)

where , , , are functions of class . Define
and as the increment of along the trajectories

of (2) by

(5)

If , where is a function of class then the equilib-
rium of system (2), with the initial conditions taken on finite
support, is asymptotically stable (Definition 2.2).
Remark 3: Conditions (4) also implies that there exist class func-

tions , , such that .
Proof: Suppose that and (4) holds, by hypoth-

esis, we can write

(6)

Let denotes the ’energy’
stored on the line . It follows from (6) and
the positivity of that

Now remember that our initial conditions are defined in a finite set. Let
us call the highest bound of this set (i.e.,
for all ) and consider the case when .

This implies that which means that the energy
is decreasing for all . If ,

. By definition and using the
positive definiteness of , . Adding the last inequalities for

gives us

and are continuous functions with ,
so by continuity, and can be as small as
desired considering small initial conditions and . It
means that for all there exists a such that if
and

For as is decreasing, stands, therefore

We conclude from Definition 2.2 that the system (2) is stable.
To conclude the proof we need to show that
. For , is a decreasing positive series that converges to a
given limit, hence . But going back
to inequality (6), observe that for
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This proves that , hence as is of class
, it leads to which concludes the proof.
Theorem 3.2: Let , be continuous functions from ,

, respectively, such that for all

(7)

where , and are positive constants. Define
. If there exists a constant such that for any trajec-

tory solution of system (2) with initial conditions taken on
finite support where is defined in (5) then,
is exponentially stable.

Proof: For simplicity, we will only consider but the gen-
eral case is similar. Let be a solution of system (2) with initial
conditions and with finite support. Consider the quan-
tity (or
in the general case) which represents the energy stored on the line

and let . With a similar argu-
ment than the previous proof, one can show that

(8)

By induction on , it follows that:

The use of inequality (7) leads to

As the initial conditions are with finite support, there is an such that
for , the initial conditions are equally 0. Therefore for all

We may rewrite this as

where is a constant. To conclude the proof, let us use the first
part of inequality (7) which gives

This is exactly the bound given in Definition 2.3 as the initial conditions
are taken with the finite support and .

B. Example

Let us illustrate our first theorems in a nonlinear case with a simple
example. Consider the system

where is a nonlinear function such that
and . Take the Lyapunov function candidate

obviously verifies the first
part of Theorem 3.2. Computing the quantity (see (5)) gives

Using the facts that

and that , one easily gets . By Theorem 3.2,
the system is exponentially stable (if the initial conditions have a finite
support).

C. Converse Theorem

The next theorem is the first converse Lyapunov theorem introduced
for 2-D systems. We assume that system (2) is exponentially stable.
Roughly speaking, we have to find a function (or rather a “func-
tional” here) such that its variation along the trajectories of our system
is bounded by the values of along these trajectories. To define these
notions properly, we begin with some general considerations.
We can view as the space of initial conditions of

system (2): if , then there is a unique tra-
jectory of system (2) such that and .
Conversely, if is a trajectory of system (2), then for all

, defines an element in , namely
and . Note that for fixed ,

the trajectory corresponding to these initial conditions, to be denoted
by , is simply given by . Let be the
subset of which contains all initial conditions
such that if is the corresponding trajectory, then there exists a number

such that for all , decays at rate . Let us empha-
size that, by definition, any trajectory starting at is in particular expo-
nentially decaying at some rate . By our discussion in Section II (see
Proposition 2.5), we know that contains .
Now, let be a function defined on this subspace of initial

conditions. If is an exponentially decaying trajectory of system (2),
we define along to be the (double) sequence

. We would also like to define the variation of
along . To this end, we assume that can be written in the following
form: , where are functions such that if

and is the corresponding trajectory, then
(respectively ) depends only on (respectively on ).
For such a function , its variation along a trajectory is the
double sequence defined for all by

which is the same as
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With these preliminaries in mind, we can state our result.
Theorem 3.3: Assume that system (2) is exponentially stable. Then

there exists a function having the following properties:
1) There are two positive constants and such that for all

, we have

2) There are two functions such that
and for any with corresponding trajec-

tory , (respectively ) depends only on
(respectively on ).

3) There is a positive constant such that along any exponentially
decaying trajectory of system (2) starting at , we have

.
Proof: For , we let be the corresponding trajec-

tory; is exponentially decaying at some rate . We define
by . As decays exponentially,
is well defined. We can also define in a similar way, and set-

ting , we see that satisfies the second property of our
theorem.
The first property of the theorem is also easily verified with the given

norms. First verifies the first part of the inequality with
. To see why, observe that

The second part of inequality comes from first observing that for any
sequence , . Now, by exponential stability (see
Definition 2.3), we know that we can find some constant such
that

which leads to: ,
so that verifies the desired inequality.
To prove the last property, we have to compute, for fixed , terms

such as for a trajectory of system (2). To
achieve this, we just notice that the trajectory corresponding
to the initial conditions is given by

. This implies that
, and similar expressions can be found to com-

pute the other terms involved in and along the trajectory .
Thus, we have

It follows that we have to find some satisfying:

Now, the exponential stability condition of Definition 2.3 applied to
yields

Summing over and , we get

(9)

The first term in the right hand side of this inequality may be dealt with
as

The second term in the right hand side of inequality (9) can be com-
puted in the same way. Finally, we can argue in a similar way to esti-
mate , and conclude that satisfies the third
property of our theorem with .

IV. CONCLUSION

Let us highlight the contributions of this technical note. Definitions
of stability, asymptotic stability and exponential stability have been
provided and the coherences/differences with the ones in the 1-D case
have been discussed. In the second part of the technical note we pro-
vided two different Lyapunov theorems which give sufficient condi-
tions to check the proposed definitions. Finally the first converse the-
orem has been provided in the exponential case. This opens new possi-
bilities for multidimensional systems and solid basis in order to extend
some well-known techniques from the 1-D to the 2-D case.
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Affine Characterizations of Minimal and Mode-Dependent
Dwell-Times for Uncertain Linear Switched Systems

Corentin Briat and Alexandre Seuret

Abstract—An alternative approach for minimum and mode-dependent
dwell-time characterization for switched systems is derived. While min-
imum-dwell time results require the subsystems to be asymptotically stable,
mode-dependent dwell-time results can consider unstable subsystems and
dwell-times within a, possibly unbounded, range of values. The proposed
approach is related to Lyapunov looped-functionals, a new type of func-
tionals leading to stability conditions affine in the system matrices, unlike
standard results for minimum dwell-time. These conditions are expressed
as infinite-dimensional LMIs which can be solved using recent polynomial
optimization techniques such as sum-of-squares. The specific structure of
the conditions is finally utilized in order to derive dwell-time stability re-
sults for uncertain switched systems. Several examples illustrate the effi-
ciency of the approach.

Index Terms—Dwell-time, looped-functionals, sum of squares, switched
systems, uncertain systems.

I. INTRODUCTION

Switched systems [1]–[9] are an important subclass of hybrid sys-
tems for which the system dynamics are selected among a countable
family of subsystems. They are very powerful modeling tools for sev-
eral real world processes, like congestion modeling and control in net-
works [10]–[13], switching control laws [4], electromechanical sys-
tems [14], networked control systems [15], electrical devices/circuits
[16], [17], etc. These systems exhibit interesting behaviors motivating
their analysis: for instance, switching between asymptotically stable
subsystems does not always result in an overall stable system [18],
[19]. Conversely, switching between unstable subsystems may result
in asymptotically stable trajectories [18], [19]. It is well-known that
in the case of asymptotically stable linear subsystems, when their ma-
trices commute or can be expressed in an upper triangular form via
a common similarity transformation, stability of the overall switched
system under arbitrary switching is actually equivalent to the existence
of a quadratic common Lyapunov function [4], [19]. In all the other
cases, the existence of a quadratic common Lyapunov function is only
sufficient, albeit the existence of a common (not necessarily quadratic)
Lyapunov function is necessary. When no common Lyapunov function
exists, approaches based for instance on polyhedral Lyapunov func-
tions [20], [21] or switched Lyapunov functions [3], may be considered
instead. The main difficulty arising from the use of switched Lyapunov
functions lies in the discontinuities of the Lyapunov function level at
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